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Summary

Background Medical artificial intelligence (AI) has entered the clinical implementation phase, although real-world
performance of deep-learning systems (DLSs) for screening fundus disease remains unsatisfactory. Our study aimed
to train a clinically applicable DLS for fundus diseases using data derived from the real world, and externally test the
model using fundus photographs collected prospectively from the settings in which the model would most likely be
adopted.

Methods In this national real-world evidence study, we trained a DLS, the Comprehensive Al Retinal Expert (CARE)
system, to identify the 14 most common retinal abnormalities using 207 228 colour fundus photographs derived from
16 clinical settings with different disease distributions. CARE was internally validated using 21867 photographs and
externally tested using 18136 photographs prospectively collected from 35 real-world settings across China where
CARE might be adopted, including eight tertiary hospitals, six community hospitals, and 21 physical examination
centres. The performance of CARE was further compared with that of 16 ophthalmologists and tested using datasets
with non-Chinese ethnicities and previously unused camera types. This study was registered with ClinicalTrials.gov,
NCT04213430, and is currently closed.

Findings The area under the receiver operating characteristic curve (AUC) in the internal validation set was 0-955
(SD 0-046). AUC values in the external test set were 0-965 (0-035) in tertiary hospitals, 0-983 (0-031) in community
hospitals, and 0-953 (0-042) in physical examination centres. The performance of CARE was similar to that of
ophthalmologists. Large variations in sensitivity were observed among the ophthalmologists in different regions and
with varying experience. The system retained strong identification performance when tested using the non-Chinese
dataset (AUC 0-960, 95% CI 0-957-0-964 in referable diabetic retinopathy).

Interpretation Our DLS (CARE) showed satisfactory performance for screening multiple retinal abnormalities in
real-world settings using prospectively collected fundus photographs, and so could allow the system to be implemented
and adopted for clinical care.

Funding This study was funded by the National Key R&D Programme of China, the Science and Technology Planning
Projects of Guangdong Province, the National Natural Science Foundation of China, the Natural Science Foundation
of Guangdong Province, and the Fundamental Research Funds for the Central Universities.
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Introduction

A retinal examination is important in the detection of both
systemic diseases that affect the eye (eg, diabetes and
hypertension) and primary ocular diseases (eg, age-related
macular degeneration [AMD]).! The use of fundus
photography based on a teleophthalmology platform is an
appealing means to screen and monitor such retinal
diseases. The addition of artificial intelligence (AI) to
fundus photography provides an opportunity to improve
this platform for the detection and monitoring of retinal
diseases on a large scale.?” Over the past 5 years, satisfactory
performance of AI models for the automated detection of
diabetic retinopathy,' AMD,’ and optic-nerve abnormalities®
from fundus photographs has been reported.
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Medical Al technology has moved from the research
phase to clinical implementation.”” However, studies that
show the performance of image-driven AI deep-learning
systems (DLSs) for fundus disease screening in real-
world environments are scarce. Real-world evidence has
been recommended to be used in clinical evaluation and
regulatory decisions about new medical device products.”
The US Food and Drug Administration authorised the
first autonomous Al-based diagnostic system for the
detection of diabetic retinopathy after a small-scale
clinical trial (900 participants) in primary-care offices
in 2018." Another example is a study by Google Health,
which used a validated DLS trained on retrospective, well
curated retinal images (EyePACS and Messidor)* for the
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Research in context

Evidence before this study

Medical artificial intelligence (Al) has entered the clinical
implementation phase, although real-world performance of
deep-learning systems (DLSs) for screening fundus disease
remains unsatisfactory. A clinically applicable DLS for fundus
diseases should be trained by real-world data and externally
tested by fundus photographs collected prospectively from the
settings in which the model would most likely be adopted.

We searched PubMed and Web of Science on June 1, 2020 for
articles published between Jan 1, 2010, and May 31, 2020, using
the keywords “artificial intelligence”, “deep learning”, “fundus
disease” (or other disease names, including “diabetic
retinopathy” and “age-related macular degeneration”), and
“real-world”, but identified no known studies that tested DLS
for fundus diseases using prospectively collected nationwide
real-world data. We did not apply any language restrictions.
The US Food and Drug Administration authorised the first
autonomous Al-based diagnostic system for diabetic-
retinopathy detection after a small-scale clinical trial in primary-
care offices. Another study was done by Google Health, which
used a validated DLS trained on retrospective well curated
retinal images for the detection of diabetic retinopathy, was

detection of diabetic retinopathy, and was applied in
11 clinics in a real-world setting in Thailand. The study
showed that 21% of fundus photographs in these real-
world clinics could not be identified by the system, which
affected the overall performance of the DLS model. Li and
colleagues” also developed and tested a deep-learning
algorithm for the detection of glaucomatous optic
neuropathy using retinal images downloaded from
another public online dataset (LabelMe). Most of these
publicly-available photographs are highly selective and
have unclear data sources, which are not representative of
data in real-world clinical settings. Ideally, the DLS should
be tested on fundus photographs prospectively collected
from real-world clinical settings, especially from primary-
care and community settings with specific environments
in which the AI model would most likely be used.”
Furthermore, network-connectivity issues are another
factor hindering the clinical application of DLS models.”
Developing a DLS that can detect multiple retinal
abnormalities is more valuable for the real-world clinical
setting. However, nearly all reported multidisease-
identification DLS models were ensembles of multiple
binary-classification networks that were separately
trained using single disease-labelled photographs.”’
Running these complicated DLSs consumes a large
amount of the memory of the graphics processing unit
(GPU), which requires support from a powerful online
GPU server. Developing a simple-architecture DLS with
less computational cost to work offline might be more
suitable for real-world clinical applications, especially in
remote areas with poor networks and scarce medical

applied in 11 clinics in real-world settings in Thailand. However,
the performance of the DLS was well below expectation in a
real-world environment, and further model training and testing
is required.

Added value of this study

This national real-world evidence study trained a DLS to
identify 14 retinal abnormalities using fundus photographs
collected from different medical real-world settings and tested
the DLS using photographs prospectively collected from
settings across China and a series of designed datasets.

The model performed well in a real-world environment.

This study also showed that an Al solution can be deployed in
remote areas with poor network infrastructure and scarce
medical resources, while maintaining a high degree of accuracy.

Implications of all the available evidence

Using representative data to train a DLS and testing the model
with prospectively-collected real-world data across the country
can improve model performance in a real-world environment.
This study provides an important reference for the National
Medical Products Administration in regulatory decisions about
new medical Al-device products.

resources. Finally, the ensembles of DLS models might
prevent sharing of disease information and assisted or
differential diagnoses among multiple retinal abnor-
malities, thereby compromising efficiency and hindering
further improvement in model performance. Algorithms
that are able to detect multiple retinal abnormalities
while recognising the correlation between them appear
to more closely mimic the thought process of physicians.

Our study aims to address these limitations in the
detection of retinal abnormalities using fundus photo-
graphs. To the best of our knowledge, this is the first
study to use fundus photographs prospectively collected
from the real world to test a DLS model for identifying
multiple retinal abnormalities in a country with a
heterogeneous population.

Methods

Study design

This is a national real-world evidence study involving
51 clinical settings across China (appendix 2 p 2). We
developed a Comprehensive Al Retinal Expert (CARE)
system to identify 14 common retinal abnormalities
using 207228 colour fundus photographs derived from
16 clinical settings with different disease distributions
across China. CARE is a model for a single convolutional
neural network (CNN) that is highly efficient with lower
computational cost than ensembles of binary DLSs for
individual abnormalities. CARE was internally validated
using 21867 photographs and then externally tested
using 18136 photographs prospectively collected from
35 real-world centres across China, where the model
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would most likely be adopted, including eight tertiary
hospitals, six community hospitals, and 21 physical
examination centres. The model performance was
compared with that of ophthalmologists from nine
provinces of China and compared with ophthalmologists
with varying clinical experience. Finally, the validity of
CARE was also tested on fundus photographs in non-
Chinese ethnicities and previously unused camera types.

40 ophthalmologists licensed in China (each with >5 years
of experience) and six retinal experts (each with >10 years
of experience) were involved in the annotation process
(appendix 2 p 3). Each fundus photograph was randomly
assigned to three qualified ophthalmologists for annotation
(appendix 2 p 4); if the results were consistent, the
annotation was adopted. If the findings were discordant,
the three ophthalmologists had to discuss the results to
reach a consensus. Expert arbitration was done by three
retinal experts if any disagreement occurred in the
previous discussion. For each individual, only one fundus
photograph per eye was included. In total, 260830 colour
fundus photographs with 45-50° fields of view taken under
natural pupil size were used for the training and testing of
CARE. All photographs were categorised as normal or
labelled with one or more of the following 14 common
retinal abnormalities: two ocular manifestations of
systemic diseases (referable diabetic retinopathy and
referable hypertensive retinopathy) and 12 vision-
threatening abnormalities (glaucomatous optic neu-
ropathy, pathological myopia, retinal vein occlusion, retinal
detachment, macular hole, macular oedema, central
serous chorioretinopathy, epiretinal membranes, retinitis
pigmentosa, retinal drusen =65 pm, macular neovas-
cularisation, and geographic atrophy). The retinal
abnormalities were diagnosed by colour fundus photo-
graphs on the basis of a comprehensive consideration of
disease characteristics obtained from textbooks, reported
literature, and the experience of retinal experts. We
summarised the definitions or basis for judgment of the 14
included retinal abnormalities as a reference for the graders
(appendix 2 p 25). All retinal abnormalities observed were
labelled if several lesions were found in the same
photograph.

This study was approved by the institutional
review board of the Zhongshan Ophthalmic Centre at
Sun Yat-sen University (IRB-ZOC-SYSU). All procedures
followed the tenets of the Declaration of Helsinki. All
fundus photographs were anonymised and de-identified
before the analysis. Informed consent was exempted
by the IRB-ZOC-SYSU in the retrospectively collected
development and internal validation sets. In the
prospectively collected external test set, informed consent
was obtained from the patients.

Development and internal validation datasets

CARE was developed using 207228 fundus photographs
retrospectively collected from 16 clinical settings pro-
viding different amounts of medical care and disease
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Figure 1: Geographical distribution of the clinical settings used in the model training and testing

The modelling data were predominantly derived from 16 clinical settings in first-tier cities, whereas the fundus

photographs included in the external test sets were prospectively collected from 35 settings across China.
PEC=physical examination centre. ZOC=Zhongshan Ophthalmic Centre.

distributions across nine provinces or municipalities of
China between Jan 4, 2016 and Jun 29, 2018 (appendix 2
pp 16-17). 16 settings with different disease distributions
in the development set were mainly located in first-tier
cities, including five tertiary hospitals, five community
hospitals, and six physical examination centres (figure 1,
table 1).

In total, 21867 fundus photographs derived from the
same settings as the development set during a different
time period (from July 2, 2018, to Oct 31, 2018) were used to
internally validate CARE. The internal validation set was
divided into three subgroups according to the data sources
as follows: hospital-based datasets with a fundus-disease
ratio of 91-21%, community-based datasets with a fundus-
disease ratio of 20-96%, and population-based datasets
with a fundus-disease ratio of 10-30% (appendix 2 p 18).

External test dataset from 35 centres

The primary aim of CARE was to screen common
retinal abnormalities in communities and populations
undergoing physical examinations in different regions of
China. Therefore, the model was externally tested using
18136 fundus photographs prospectively collected (from
Dec 3, 2018, to Oct 31, 2019) from 35 real-world clinical
settings where the model would be used (with no overlap
of settings in the development set). The 35 settings are
distributed in 28 provinces or municipalities of China
(28 [82%)] of 34 total provinces and municipalities in
China; appendix 2 pp 19-20). The community-based and
population-based data were prospectively collected from
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Development Internal validation set External test set* Clinical test set Total
Tertiary Community  Physical Tertiary Community  Physical CARE- Non-Chinese Camera-
hospital hospital examination  hospital hospital examination  human ethnicity type test
centre centre competitions (EyePACS)

Photographs 207228 6735 1614 13518 3101 7599 7039 358 11294 1977 260830t

Labels 253069 11107 1732 13796 4690 7734 7246 366 11294 1977 313011

Label of normal 127508 976 1369 12375 951 7271 6483 44 3976 1636 162589

fundus

Label of disease 125561 10131 363 1421 3645 463 763 322 7318 341 150328

Type of disease 14 14 9 11 14 9 8 2 1 3 14

Manufacturers of 6 6 5 4 6 4 4 4 NA 1 7

camera

Tertiary hospital- 63625 6735 0 0 3101 0 0 358 NA 1977 NA

based dataset (30-7%) (100%) (100%) (100%) (100%)

Community 53221 0 1614 0 0 7599 0 0 NA 0 NA

hospital-based (25-7%) (100%) (100%)

dataset

Population-based 90382 0 0 13518 0 0 7039 0 NA 0 NA

dataset (43:6%) (100%) (100%)
Data are n or n (%). The fundus photographs in the development and internal validation datasets were required to be of clinically acceptable quality; more than 80% of the area in the retinal image needed to be
easily discriminated, including four main regions (the optic disc, macula, upper-retinal vessel arches, and lower-retinal vessel arches). The images exhibited light leaks covering less than 30% of the area, without
spots from lens flares or stains, or severe overexposure. During model training, 211676 fundus photographs were identified, and 207 228 (97-9%) of 211 676 were included for clinically acceptable quality. During
internal validation, 22 482 fundus photographs were identified, and 21867 (97-3%) of 22 482 were included for clinically acceptable quality (6735 [94-1%] of 7160 in tertiary hospitals; 1614 [98-3%] of 1642 in
community hospitals; and 13518 [98-8%] of 13 680 in physical examination centres). All fundus photographs from the external test set were used in testing CARE. CARE=Comprehensive Artificial intelligence
Retinal Expert. NA=not applicable. *A high-performance quality-control model was introduced to assess the quality of fundus photographs before further analysis in the external test set, and 397 (2-2%) of
18136 photographs were identified as ungradable (184 [5-9%] of 3285 from tertiary hospitals; 130 [1.7%] of 7729 from community hospitals; and 83 [1-2%] of 7122 from physical examination centres).
tIncluding 397 ungradable photographs from the external test set. tFundus photographs were collected from physical examination centres.
Table 1: Characteristics of the development, internal validation, external, and clinical test sets of CARE
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six community hospitals and 21 physical examination
centres across China (figure 1). Given the low prevalence
of some retinal abnormalities in the general population,
hospital-based data from eight tertiary hospitals (different
from those used in the development sets) were also
collected to test the model in identification of each of the
14 retinal abnormalities. All fundus photographs from
the external test set were used in testing the model
(table 1). All fundus photographs were taken by trained
non-ophthalmologists. Patients were informed of the
primary results immediately after fundus screening by
CARE. The final diagnosis reports, confirmed by qualified
ophthalmologists, were sent to patients by mobile
application and a short message within one day. Blood-
sugar concentrations and blood pressure were measured
to assist final diagnosis of referable diabetic retinopathy
and hypertensive retinopathy by ophthalmologists.
Refractive error in dioptres was measured in cases of
pathological myopia to ensure diagnostic accuracy.

Algorithm construction of CARE

CARE was trained and tested using InceptionResNetV2
architecture on the TensorFlow platform (version 1.10.1;
Google, Mountain View, CA, USA)* and the Python scikit
learn package 0.22.2. CARE was optimised by the Adam
optimiser” with an initial learning rate of 0-001. Training
and testing were done using GTX 1080Ti GPU x2 (CUDA
version 9.0; Nvidia, Santa Clara, CA, USA) with a batch size
of 16. CARE was trained using multidisease-labelled

fundus photographs in a single CNN network in which all
disease information was shared with each interconnected
classifier (figure 2A). This structure was selected as an
assembled DLS with independent binary classifiers that do
not share disease features (figure 2B). We presented more
details regarding the algorithm principle of CARE
(appendix 2 p 28).

Clinical tests

We compared the performance of CARE with that of
15 independent binary-classification models trained using
15 single-disease labels (normal fundus and 14 retinal
abnormalities). The 15 binary-classification models were
trained using the same development set and neural
network architecture as CARE. The performance of CARE
and the single disease-labelled models was compared
using the hospital-based internal test set because of its
good coverage of all included retinal abnormalities.

A disease-screening model should perform better than or
similarly to physicians before real-world adoption. In this
study, the performance of CARE was compared with that of
nine ophthalmologists with experience with fundus disease
(each 5-10 years of experience in tertiary hospitals) from
the following nine provinces or municipalities of China:
Beijing in north China; Shandong in north China; Hubei
in central China; Hunan in central China; Tibet in
northwest China; Xinjiang in northwest China; Guangdong
in south China; Guangxi in south China; and Shanghai in
East China.

www.thelancet.com/digital-health Vol 3 August 2021



Articles

A Asingle-network CARE model
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Figure 2: Algorithm principle comparison between CARE and an assembled deep-learning system

CARE was trained using multidisease-labelled fundus photographs in a single convolutional neural network in which all disease information was shared with each
interconnected classifier (A). This structure was selected as an assembled deep-learning system with independent binary classifiers that do not share disease
features (B). CARE=Comprehensive Artificial intelligence Retinal Expert. Conv=convolutional. DR=diabetic retinopathy. HR=hypertensive retinopathy. RD=retinal

detachment.

Furthermore, we compared the model performance
with that of four groups of Chinese-licensed ophthal-
mologists with diverse levels of experience as follows:
two graduate students with less than 3 years of
experience; two ophthalmologists with more than
5 years of experience; two retinal experts with more
than 10 years of experience; and one subgroup leader of
the retinal-disease group of the Chinese Ophthal-
mological Society (COS). The dataset used in the
comparisons between CARE and the ophthalmologists
included 358 additional fundus photographs collected
from settings other than those that produced the
development and test sets. All of the ophthalmologists
involved in the comparisons were different from the
46 annotation doctors or experts.

CARE was tested using datasets with different
ethnicities and camera types to validate the model
performance. CARE was tested using 11294 relabelled
fundus photographs randomly selected from a public
Kaggle dataset (EyePACS LLC, San Jose, CA, USA).” The
fundus photographs of EyePACS were mostly collected
from the Latino population in the USA, and featured
different ethnic compositions from the Chinese dataset,
including Hispanic patients (nearly 55%), with Black,
White, and Asian patients each comprising approximately
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5-10% of the population.* Because of the small number
of disease categories in the EyePACS Kaggle dataset, only
the identification of referable diabetic retinopathy
(including moderate-to-severe non-proliferative diabetic
retinopathy and proliferative diabetic retinopathy) was
analysed in this study. As the most common camera
types were covered in the development set, CARE was
tested using a special dataset of 1977 scanned files of
printed fundus photographs from an old-film camera
(CR6-45NM, Canon, Tokyo, Japan) that completely
differed from those used to capture the development and
test sets. Examples of fundus photographs from
development, Kaggle (EyePACS), and scanned-file
datasets are shown (appendix 2 p 5).

Statistical analysis

All data were stored in the National Engineering Research
Centre of Science and Technology Information. The area
under the receiver operating characteristic curve (AUC),
sensitivity, specificity, and 95% CIs of the AUC of the
DLS were calculated to establish and compare model
performance. 95% ClIs of the AUCs were calculated with
2000 bootstrap samples using the Python scikit learn
package (version 0.22.2).” This study was registered with
ClinicalTrials.gov (NCT04213430).
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Internal validation set External test set Threshold*
Tertiary hospital Community hospital Physical examination Tertiary hospital Community hospital Physical examination
(n=6735) (n=1614) centre (n=13518) (n=3101) (n=7599) centre (n=7039)
Referable diabetic 0-954 (0-947-0-960)  0-992 (0-983-0-997)  0-852 (0-628-0-999)  0-960 (0-953-0-966)  0-999 (0-998-1.000)  0-918 (0-887-0-944)  0-014
retinopathy
Referable hypertensive  0:797 (0-759-0-832) NA NA 0-861(0-788-0-922) NA NA 0-019
retinopathy
Glaucomatous optic 0-952 (0:945-0-958) 0-968 (0-958-0-977) 0-954 (0-946-0-963) 0-991 (0-989-0-994) 0-993 (0-991-0-996) 0-983 (0-979-0-985) 0-058
neuropathy
Pathological myopia 0-975 (0-970-0-979) 0-993 (0-988-0-996)  0-975 (0-952-0-990) 0-990 (0:986-0-994)  0-995 (0-992-0-997) 0-994 (0:992-0-996)  0-070
Retinal vein occlusion 0-962 (0-959-0-966)  NA NA 0-948 (0-:940-0-956)  NA NA 0-087
Retinal detachment 0-975 (0-961-0-985) NA NA 0-991 (0-970-0-999) NA NA 0-025
Macular holes 0-953 (0-932-0-971) NA 0-999 (0-999-1-000) 0-998 (0-992-1-000) NA NA 0-010
Macular oedema 0975 (0-971-0-978)  0-994 (0-985-0-999)  NA 0-940 (0:933-0-947)  0-999 (0-999-1-000)  NA 0012
Central serous 0-983(0-976-0-989) NA NA 0-974 (0-914-0-999)  NA NA 0-019
chorioretinopathy
Epimacular membranes  0-951 (0-941-0-960)  0-992 (0-985-0-998)  0-994(0-990-0-997)  0-934(0-914-0-952)  0-990 (0-985-0-995)  NA 0-059
Retinitis pigmentosa 0-996 (0-994-0-998)  NA NA 0-999 (0-:999-1:000)  NA NA 0-018
Retinal drusen 0-916 (0-898-0-932)  0-977 (0-966-0-986)  0-938 (0-867-0-987)  0-948 (0-912-0-975)  0-994 (0-991-0-996)  0-982 (0-971-0-990)  0-006
Macular 0-977 (0-974-0-981)  NA NA 0-981(0-973-0-987)  NA NA 0113
neovascularisation
Geographic atrophy 0-946 (0-:910-0-973)  NA NA 0-999 (0-999-1:000)  NA NA 0-001
Normal fundus 0-973(0-969-0-976)  0-903 (0-893-0-914)  0-868 (0-859-0-876) 0-961 (0-956-0-965)  0-908 (0-902-0-915)  0-889 (0-882-0-895) 0172
Mean AUC (SD) 0-952 (0-045) 0-974 (0-030) 0-940 (0-054) 0-965 (0-035) 0-983(0-031) 0-953(0-042) NA
Data are AUC (95% Cl). Model performance in identifying diseases with fewer than five fundus photographs was not analysed. AUC=area under the curve. CARE=Comprehensive Artificial intelligence Retinal
Expert. NA=not applicable. *The thresholds are calculated on the basis of tertiary hospital-based data of the internal validation set; the sum of the sensitivity and specificity is maximised to obtain the threshold.
Table 2: Performance of CARE in internal validation and external tests for retinal abnormalities
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Role of the funding source

The funders had no role in the study design, data
collection, data analysis, data interpretation, or writing of
this report.

Results

In total, 260830 fundus photographs were included in
the model development and evaluation. The ratio of
fundus photographs among the dataset for the model
development, internal validation, external test, and
clinical test was 80:8:7:5. The disease distributions in the
development and test sets are shown (appendix 2 p 18).
397 (2-2%) of 18136 photographs were classified as
ungradable by the algorithm in the external test set
(table 1). The information of known manufacturers and
types of camera used in this study are presented
(appendix 2 p 21).

The performance of CARE using the internal test and
external test sets is shown (table 2; appendix 2 pp 6-11).
The mean AUC for identifying the 14 retinal abnormalities
and normal fundus was 0-955 (SD 0-046) in the internal
validation set and 0-968 (0-037) in the external test set.
Except for hypertensive retinopathy, CARE exhibited
good performance with the included abnormalities, and
nearly all AUCs were greater than 0-9. Normal fundus
could also be correctly identified by CARE with AUCs
ranging from 0-868 (95% CI 0-859-0-876) to 0-973
(0-969-0-976) in datasets with different disease

proportions. The anatomical regions that the algorithm
might have been using to make its diagnoses were shown
by the attention heatmaps (appendix 2 p 12). 2987
(13-66%) of 21 867 fundus photographs in the internal
validation set and 863 (4-76%) of 18 136 in the external
test set were identified as having multiple abnormalities
by CARE; detailed percentage and distribution of multiple
diagnoses are shown (appendix 2 p 22).

The comparisons of the model performance between
CARE and the single disease-labelled binary models
(SBMs) with 14 retinal abnormalities are shown (table 3;
appendix 2 p 13). The mean AUC of CARE was higher
than that of SBM (0-952 vs 0-921) with a narrower SD
(0-047 vs 0-087). Compared with SBM, CARE was
superior at identifying retinal drusen, macular hole,
geographic atrophy, and normal fundus. CARE showed
marginal superiority in identifying referable hypertensive
retinopathy, although neither CARE nor SBM showed
satisfactory performance (table 3).

The performance of CARE was similar to that of
ophthalmologists in different regions with varying
experience (figure 3). Large variations in sensitivity were
observed among the ophthalmologists from different
regions, ranging from 0-610 to 0-911 in referable diabetic
retinopathy and from 0-500 to 0-929 in pathological
myopia (appendix 2 p 23). Large variations in sensitivity
were also observed among doctors with varying
experience, from 0-447 to 0-834 in referable diabetic
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Referable diabetic retinopathy
Referable hypertensive retinopathy
Glaucomatous optic neuropathy
Pathological myopia

Retinal vein occlusion

Retinal detachment

Macular holes

Macular oedema

Central serous chorioretinopathy
Epimacular membranes

Retinitis pigmentosa

Retinal drusen

Macular neovascularisation
Geographic atrophy

Normal fundus

Mean AUC (SD)

Artificial intelligence Retinal Expert. SBM=single disease-labelled binary model.

AUC (95% Cl) Sensitivity Specificity
CARE SBM CARE SBM CARE SBM
0-954 (0-948-0-960) 0-973 (0-967-0-978) 0938 0-951 0-878 0-912
0-797 (0-763-0-833) 0-769 (0-745-0-791) 0-600 0-887 0-862 0-562
0-952 (0-945-0-957) 0-970 (0-964-0-976) 0-915 0-960 0-866 0-880
0-975 (0-970-0-979) 0-988 (0-984-0-991) 0-898 0-953 0-934 0-953
0-962 (0:959-0-966) 0-992 (0:989-0-994) 0-945 0-956 0-905 0-969
0-975 (0:962-0-984) 0-917 (0-897-0-936) 0-923 0-936 0-929 0-772
0-953 (0-933-0-970) 0-786 (0-738-0-830) 0-880 0-758 0-869 0-691
0-975 (0-972-0-978) 0-963 (0:959-0-966) 0-931 0-909 0-924 0-887
0-983(0:976-0-989) 0-962 (0:956-0-968) 0-935 0-943 0-933 0-877
0-951(0-939-0-960) 0-941 (0-933-0-949) 0-882 0-876 0-903 0-877
0-996 (0-994-0-998) 0-991(0-985-0-997) 0-973 0-959 0-981 0-977
0-916 (0-900-0-932) 0-743 (0-733-0-753) 0-860 0-862 0-850 0-556
0-977 (0-973-0-981) 0-992 (0-990-0-993) 0-922 0-958 0-925 0-953
0-946 (0-913-0-971) 0-869 (0-822-0-911) 0918 0-754 0-888 0-824
0-973 (0:969-0-976) 0-962 (0-960-0-965) 0-942 0-943 0-900 0-867
0-952 (0-047) 0-921(0-087) 0-897(0-087) 0-907(0-069)  0-903 (0-035) 0-837(0-136)
The performance of CARE and SBM was compared using the tertiary hospital-based internal validation set (n=6735). AUC=area under the curve. CARE=Comprehensive
Table 3: Performance comparisons between CARE and SBM in the identification of 14 retinal abnormalities

retinopathy and from 0-643 to 0-964 in pathological
myopia (appendix 2 p 24). The subgroup leader of retinal
disease of COS and the retinal experts exhibited slightly
higher performance in disease identification than those
with less experience.

CARE showed similar ability in identifying referable
diabetic retinopathy (AUC 0-960, 95% CI 0-957-0-964)
using the fundus photographs from the Kaggle dataset,
which differed from the Chinese dataset in its ethnic
composition. Compared with the tertiary hospital-based
data of the external test set, CARE exhibited a reduced
ability in identifying referable diabetic retinopathy (from
AUC 0-960 [0-953-0-966] to AUC 0-882 [0-811-0-945]),
geographical atrophy (from AUC 0-999 [0-999-1-000] to
AUC 0-899 [0-876-0-920]), and normal fundus (from
AUC 0-961 [0-956-0-965] to AUC 0-837 [0-816-0-858))
in the scanned files of fundus photographs from a
previously-unused camera type (appendix 2 p 14).

Discussion

A wealth of data is needed for DLS training to
discriminate clinically meaningful pathological changes
from insignificant features. More still is required for
model testing to validate application performance. Using
unrepresentative and selective data and other single-
centre small-sample databases is not suitable for
developing disease-identification DLS models because
they limit generalisability and application in real-
world clinical environments. In this national real-world
evidence study, we trained a DLS (CARE) to identify
14 retinal abnormalities using fundus photographs
collected from different medical real-world settings. We
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tested the model using not only photographs collected
prospectively from 35 settings across China where the
model would be mostly applied, but also a series of
designed datasets with non-Chinese ethnicities and
previously unencountered camera types. Furthermore,
the requirement of computing power for CARE was
relatively low. The computational cost of deploying an
online AI service is dependent upon its GPU memory
requirements. CARE consumed a maximum memory of
3-6 Gigabytes (GPU RAM) in steady operation. Thus,
CARE can be deployed using laptops as a standalone
system for large-scale screening even in remote areas
with poor networks, which is meaningful for real-world
adoption. The module for diabetic retinopathy diagnosis
of CARE has been approved by the National Medical
Products Administration in China to enter the green
channel of innovative medical device applications, and
was also part of the first batch of class 3 Al-based devices
to be approved for the detection of fundus diseases in
China.®

Medical Al models are ultimately developed for clinical
application and to address unmet clinical needs, especially
in community settings. DLSs should be trained by
representative data and be clinically tested before their
implementation in real-world settings. China is a large
and multi-ethnic (56 nationalities) country with
34 provinces and municipalities. CARE development and
internal and external tests were based on data from
different clinical settings collected from 28 provinces and
municipalities, including regions that have the largest
number of ethnic groups, which are Yunnan, Inner
Mongolia, Ningxia, Xinjiang, and Guangxi. CARE was
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Figure 3: Comparisons of model performance with human doctors of various experience in different regions

The dataset used in the comparisons between CARE and ophthalmologists included 358 additional fundus photographs collected from settings other than those that
produced the development and test sets. The performance of CARE was similar to that of ophthalmologists in different regions (A-C) with varying experience (D-F).
Large variations in sensitivity were observed among both the ophthalmologists from different regions (ranging from 0-610 to 0-911 in referable diabetic retinopathy and
from 0-500 to 0-929 in pathological myopia) and with varying experience (ranging from 0-447 to 0-834 in referable diabetic retinopathy and from 0-643 to 0-964 in
pathological myopia). AUC=area under the receiver-operating characteristic curve. CARE=Comprehensive Artificial intelligence Retinal Expert. COS=Chinese

Ophthalmological Society.

externally tested using data that was prospectively collected
mainly from facilities the model was designed to serve, to
approximate the real-world clinical environment of this
multi-ethnic country.

We translated the computer logic of diagnosis to
imitate the thinking of physicians by training a single-
network model that can detect multiple retinal abnor-
malities using fundus photographs. CARE exhibited a
higher AUC with a narrower SD than SBM. CARE
enabled connections between coexisting and related
pathologies to be made. Patients with pathological
myopia” and macular oedema® are at higher risk for
macular hole. Macular hole caused by axial elongation
of a pathologically myopic eye is usually complicated by
vertical tractional retinal detachment at the posterior
pole.® Retinal drusen, macular neovascularisation,
and geographic atrophy are signs of AMD.? Retinal
drusen appear in any stage of AMD, including macular
neovascularisation and geographic atrophy.” Macular
neovascularisation is less likely to occur with geographic
atrophy. Including all these disease labels into one
single CNN network might allow CARE to learn the
diagnostic logic of retinal abnormalities to achieve

further model performance improvements. We found
that the abilities of CARE in the identification of retinal
drusen and macular hole were improved by nearly 20%
compared with those of SBM. Compared with other
studies, CARE also exhibited slightly superior or similar
AUCs for identifying referable diabetic retinopathy,’
glaucomatous optic neuropathy* and geographic
atrophy.”

We further validated the generalisability of CARE by
comparing the performance of CARE against that of
doctors and fundus photographs derived from patients
of non-Chinese ethnicities or taken using previously-
unused camera types. Our findings indicate that disease
diagnosis by doctors might be more easily affected by
their clinical experience and has a risk of misdiagnosis.
Because the data used for modelling and testing covered
most regions and Chinese ethnicities of China, fundus
photographs from Kaggle in the USA with different
races from China were selected to test CARE. The ability
to identify referable diabetic retinopathy was maintained
in the Kaggle dataset, which is similar to those reported
in other studies,** indicating that the performance of
CARE does not substantially decrease even when using
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fundus photographs of other races. Different camera
types have different retinal image characteristics,
including tones, exposure times, and pixilation. Given
that the most common camera types were included in
the model-training dataset, an unseen early type of non-
mydriatic retinal film camera was used to test CARE.
Scanned files of printed fundus photographs were used
to imitate varying photographic quality through
differences in colour, exposure, and resolution. Patients
usually obtain printed files of their fundus photographs
in outpatient departments and can upload electronic
copy files taken by telephone cameras to our online
diagnosis system (appendix 2 p 15). The performance of
CARE decreased to various degrees among referable
diabetic retinopathy, glaucomatous optic neuropathy,
and normal fundus. The noise of random dots and
speckles added into images during scanning could
be mistaken by the model for lesions such as
microaneurysms and small haemorrhages. Further work
is needed to improve the model’s performance using
images from different camera types.

Our study has limitations. First, cost-effectiveness,
patient experience, and clinical practice workflow were
not investigated. This study used representative data to
train CARE, and the model was tested using data mostly
approximating the real-world clinical environment. The
model framework was optimised to reduce computational
cost, which is central to translating AI models into
clinical applications. Second, retinal abnormalities were
judged mainly by characteristic features in colour fundus
photographs and the clinical experience of retinal
experts, some subtle retinal pathologies might have been
missed. However, efforts were expanded to test diag-
nostic accuracy by incorporating data related to blood
sugar, blood pressure, and degree of refractive error or
related disease history. Third, only 14 representative
common retinal abnormalities were included in this
preliminary exploration of a multidisease-labelled single-
network DLS. Other retinal abnormalities, such as
macroaneurysms and retinoblastoma, will be added in
our future studies. Furthermore, because of the limita-
tion of traditional fundus photographs with limited
visible scope,” CARE is not able to identify peripheral
retinal pathologies. In addition, only a few diseases were
included in the performance comparison between CARE
and the ophthalmologists and the tests with non-Chinese
ethnicities and unseen camera types. Satisfactory model
performance was limited to the tested diseases, and
the performance of CARE in the identification of other
retinal abnormalities in photographs with previously
unused ethnicities and camera types still requires further
investigation.

In conclusion, we showed that a DLS (CARE), using
a single CNN showed robust performance for the
identification of 14 common retinal abnormalities in real-
world settings, representing an important development in
the journey towards the adoption of Al. CARE was trained
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using representative fundus photographs and externally
tested using data prospectively collected from clinical
settings across the country, where the model would be
most applied. CARE was also tested through comparisons
with single disease-labelled binary-classification models,
ophthalmologists, and a series of designed datasets with
different ethnicities and camera types. More importantly,
the requirement for less computational cost of CARE is
important for real-world applications.

Contributors

HL and DL contributed to the concept of the study. HL, DL, JX, and YC
critically reviewed the manuscript. HL, DL, JX, CL, LZ, ZL, SY, XWu,
and BW designed the study and did the literature search. ZG, XH, MF,
XZ,XWa, TL, YoL, WW, MZ, JL, FX, LD, GT, YX, YHu, PZha, YHa,
WC, YiL, and PZhu collected the data. DL, JX, LZ, and HL contributed
to the design of the statistical analysis plan. DL, HL, LZ, CL, and JX did
the data analysis and data interpretation. DL, JX, and HL drafted the
manuscript. HL, DL, JX, YZ, CC, J-POL, LW, DSWT, TYW, and YC
critically revised the manuscript. HL, DL, and YC provided research
funding, coordinated the research, and oversaw the project. All authors
had access to all the raw datasets and the corresponding authors

(HL and YC) has verified the data and had final decision to submit for
publication. All authors reviewed and approved the final manuscript.

Declaration of interests

JX and XZ report a valid patent (application number CN108596895A; for
an eye-fundus image-detection method and device based on machine
learning as well as system), which is used for the class 3 medical device of
the Chinese National Medical Products Administration (registration
number 20203210686; fundus-photography auxiliary-diagnosis software
for diabetic retinopathy). All other authors declare no competing interests.

Data sharing

Individual participant data will be made available on request, directed to
the corresponding author (HL). After approval by the institutional review
board of ZOC at Sun Yat-sen University, partial data can be shared
through a secure online platform for research purposes. We made use of
the open-source machine-learning frameworks TensorFlow and
InceptionResNetV2 to do the experiments. Given that many aspects of
the experimental system, such as data generation and model training,
have a large number of dependencies on internal tooling, infrastructure,
and hardware, we are unable to publicly release this code in the current
stage. However, all the experiments and implementation details are
available in the methods section and appendix 2.

Acknowledgments

This study was funded by the National Key R&D Programme of China
(2018YFC0116500), the Science and Technology Planning Projects of
Guangdong Province (2018B010109008), the National Natural Science
Foundation of China (82000946 and 81770967), Natural Science
Foundation of Guangdong Province (2021A1515012238), and
Fundamental Research Funds for the Central Universities (18ykpy33).

References

1 LiuY, WuF, LuL, Lin D, Zhang K. Videos in clinical medicine.
Examination of the Retina. N Engl ] Med 2015; 373: €9.

2 Ting DSW, Cheung CY, Lim G, et al. Development and validation of
a deep learning system for diabetic retinopathy and related eye
diseases using retinal images from multiethnic populations with
diabetes. JAMA 2017; 318: 2211-23.

3 Son]J, ShinJY, Kim HD, Jung KH, Park KH, Park SJ. Development
and validation of deep learning models for screening multiple
abnormal findings in retinal fundus images. Ophthalmology 2020;
127: 85-94.

4 Gulshan V, Peng L, Coram M, et al. Development and validation of
a deep learning algorithm for detection of diabetic retinopathy in
retinal fundus photographs. JAMA 2016; 316: 2402-10.

5  Burlina PM, Joshi N, Pacheco KD, Liu TYA, Bressler NM.
Assessment of deep generative models for high-resolution synthetic
retinal image generation of age-related macular degeneration.
JAMA Ophthalmol 2019; 137: 258-64.

For TensorFlow see
https://github.com/tensorflow/
tensorflow

For InceptionResNetV2 see
https://github.com/tensorflow/
models/blob/master/research/
slim/nets/inception_resnet_v2.py

e494


https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py

Articles

e495

10

11

12

13

14

15

16

Milea D, Najjar RP. Artificial intelligence to detect papilledema
from ocular fundus photographs. N Engl ] Med 2020; 382: 1687-95.
Beede E, Baylor E, Hersch F, et al. A human-centered evaluation of
a deep learning system deployed in clinics for the detection of
diabetic retinopathy. Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. Association for Computing
Machinery; Honolulu; April, 2020.

Shah P, Kendall F, Khozin S, et al. Artificial intelligence and
machine learning in clinical development: a translational
perspective. NPJ Digit Med 2019; 2: 69.

Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial
intelligence applications for thoracic imaging. Eur ] Radiol 2020;
123: 108774.

Klonoff DC, Gutierrez A, Fleming A, Kerr D. Real-world evidence
should be used in regulatory decisions about new pharmaceutical
and medical device products for diabetes. | Diabetes Sci Technol
2019; 13: 995-1000.

Abramoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of
an autonomous Al-based diagnostic system for detection of diabetic
retinopathy in primary care offices. NPJ Digit Med 2018; 1: 39.

Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep
learning system for detecting glaucomatous optic neuropathy based
on color fundus photographs. Ophthalmology 2018; 125: 1199-206.
Lin SY, Mahoney MR, Sinsky CA. Ten ways artificial intelligence
will transform primary care. | Gen Intern Med 2019; 34: 1626-30.
Abadi M, Agarwal A, Barham P, et al. Tensorflow: large-scale
machine learning on heterogeneous distributed systems. arXiv 2016;
published online March 14. https://arxiv.org/abs/1603.04467
(preprint).

Kingma DP, Ba J. Adam: a method for stochastic optimization.
arXiv 2014; published online Dec 22. https://arxiv.org/abs/1412.6980
(preprint).

EyePACS. Why EyePACS. http://www.eyepacs.com/why-eyepacs
(accessed Nov 13, 2019).

17

18

19

20

21

22

23

24

25

26

27

Efron B. Better bootstrap confidence intervals. | Am Stat Assoc 1987;
82: 171-85.

National Medical Products Administration. Fundus image-assisted
diagnostic software products for diabetic retinopacy appproved.
2020. https://www.nmpa.gov.cn/zhuanti/ypqxgg/gggzjzh/
20200810093435157html?type=pc&m= (accessed Nov 8, 2020).

Xin W, Cai X, Xiao Y, et al. Surgical treatment for type IT macular
hole retinal detachment in pathologic myopia. Medicine 2020;

99: €19531.

Pessoa B, Dias DA, Baptista P, Coelho C, Beirao JNM, Meireles A.
Vitrectomy outcomes in eyes with tractional diabetic macular
edema. Ophthalmic Res 2019; 61: 94-99.

Ruiz-Medrano ], Montero JA, Flores-Moreno I, Arias L,
Garcia-Layana A, Ruiz-Moreno JM. Myopic maculopathy:

current status and proposal for a new classification and grading
system (ATN). Prog Retin Eye Res 2019; 69: 80-115.

Gheorghe A, Mahdi L, Musat O. Age-related macular degeneration.
Rom J Ophthalmol 2015; 59: 74-77.

Sakurada Y, Parikh R, Gal-Or O, et al. Cuticular drusen: risk of
geographic atrophy and macular neovascularization. Retina 2020;
40: 257-65.

Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep
learning system for detecting glaucomatous optic neuropathy based
on color fundus photographs. Ophthalmology 2018; 125: 1199-206.
Keenan TD, Dharssi S, Peng Y, et al. A deep learning approach for
automated detection of geographic atrophy from color fundus
photographs. Ophthalmology 2019; 126: 1533-40.

Voets M, Mgllersen K, Bongo LA. Reproduction study using public
data of: development and validation of a deep learning algorithm
for detection of diabetic retinopathy in retinal fundus photographs.
PLoS One 2019; 14: €0217541.

Li Z, Guo C, Nie D, et al. A deep learning system for identifying
lattice degeneration and retinal breaks using ultra-widefield fundus
images. Ann Transl Med 2019; 7: 618.

www.thelancet.com/digital-health Vol 3 August 2021



	Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study
	Introduction
	Methods
	Study design
	Development and internal validation datasets
	External test dataset from 35 centres
	Algorithm construction of CARE
	Clinical tests
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


