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Summary
Background Medical artificial intelligence (AI) has entered the clinical implementation phase, although real-world 
performance of deep-learning systems (DLSs) for screening fundus disease remains unsatisfactory. Our study aimed 
to train a clinically applicable DLS for fundus diseases using data derived from the real world, and externally test the 
model using fundus photographs collected prospectively from the settings in which the model would most likely be 
adopted.

Methods In this national real-world evidence study, we trained a DLS, the Comprehensive AI Retinal Expert (CARE) 
system, to identify the 14 most common retinal abnormalities using 207 228 colour fundus photographs derived from 
16 clinical settings with different disease distributions. CARE was internally validated using 21 867 photographs and 
externally tested using 18 136 photographs prospectively collected from 35 real-world settings across China where 
CARE might be adopted, including eight tertiary hospitals, six community hospitals, and 21 physical examination 
centres. The performance of CARE was further compared with that of 16 ophthalmologists and tested using datasets 
with non-Chinese ethnicities and previously unused camera types. This study was registered with ClinicalTrials.gov, 
NCT04213430, and is currently closed.

Findings The area under the receiver operating characteristic curve (AUC) in the internal validation set was 0·955 
(SD 0·046). AUC values in the external test set were 0·965 (0·035) in tertiary hospitals, 0·983 (0·031) in community 
hospitals, and 0·953 (0·042) in physical examination centres. The performance of CARE was similar to that of 
ophthalmologists. Large variations in sensitivity were observed among the ophthalmologists in different regions and 
with varying experience. The system retained strong identification performance when tested using the non-Chinese 
dataset (AUC 0·960, 95% CI 0·957–0·964 in referable diabetic retinopathy).

Interpretation Our DLS (CARE) showed satisfactory performance for screening multiple retinal abnormalities in 
real-world settings using prospectively collected fundus photographs, and so could allow the system to be implemented 
and adopted for clinical care.

Funding This study was funded by the National Key R&D Programme of China, the Science and Technology Planning 
Projects of Guangdong Province, the National Natural Science Foundation of China, the Natural Science Foundation 
of Guangdong Province, and the Fundamental Research Funds for the Central Universities.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
A retinal examination is important in the detection of both 
systemic diseases that affect the eye (eg, diabetes and 
hypertension) and primary ocular diseases (eg, age-related 
macular degeneration [AMD]).1 The use of fundus 
photography based on a teleophthalmology platform is an 
appealing means to screen and monitor such retinal 
diseases. The addition of artificial intelligence (AI) to 
fundus photography provides an opportunity to improve 
this platform for the detection and monitoring of retinal 
diseases on a large scale.2,3 Over the past 5 years, satisfactory 
performance of AI models for the automated detection of 
diabetic retinopathy,4 AMD,5 and optic-nerve abnormalities6 
from fundus photographs has been reported.

Medical AI technology has moved from the research 
phase to clinical implementation.7–9 However, studies that 
show the performance of image-driven AI deep-learning 
systems (DLSs) for fundus disease screening in real-
world environments are scarce. Real-world evidence has 
been recommended to be used in clinical evaluation and 
regulatory decisions about new medical device products.10 
The US Food and Drug Administration authorised the 
first autonomous AI-based diagnostic system for the 
detection of diabetic retinopathy after a small-scale 
clinical trial (900 participants) in primary-care offices 
in 2018.11 Another example is a study by Google Health,7 
which used a validated DLS trained on retrospective, well 
curated retinal images (EyePACS and Messidor)4 for the 
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detection of diabetic retinopathy, and was applied in 
11 clinics in a real-world setting in Thailand. The study 
showed that 21% of fundus photographs in these real-
world clinics could not be identified by the system, which 
affected the overall performance of the DLS model. Li and 
colleagues12 also developed and tested a deep-learning 
algorithm for the detection of glaucomatous optic 
neuropathy using retinal images downloaded from 
another public online dataset (LabelMe). Most of these 
publicly-available photographs are highly selective and 
have unclear data sources, which are not representative of 
data in real-world clinical settings. Ideally, the DLS should 
be tested on fundus photographs prospectively collected 
from real-world clinical settings, especially from primary-
care and community settings with specific environments 
in which the AI model would most likely be used.13

Furthermore, network-connectivity issues are another 
factor hindering the clinical application of DLS models.7 
Developing a DLS that can detect multiple retinal 
abnormalities is more valuable for the real-world clinical 
setting. However, nearly all reported multidisease-
identification DLS models were ensembles of multiple 
binary-classification networks that were separately 
trained using single disease-labelled photographs.2,3 
Running these complicated DLSs consumes a large 
amount of the memory of the graphics processing unit 
(GPU), which requires support from a powerful online 
GPU server. Developing a simple-architecture DLS with 
less computational cost to work offline might be more 
suitable for real-world clinical applications, especially in 
remote areas with poor networks and scarce medical 

resources. Finally, the ensembles of DLS models might 
prevent sharing of disease information and assisted or 
differential diagnoses among multiple retinal abnor
malities, thereby compromising efficiency and hindering 
further improvement in model performance. Algorithms 
that are able to detect multiple retinal abnormalities 
while recognising the correlation between them appear 
to more closely mimic the thought process of physicians.

Our study aims to address these limitations in the 
detection of retinal abnormalities using fundus photo
graphs. To the best of our knowledge, this is the first 
study to use fundus photographs prospectively collected 
from the real world to test a DLS model for identifying 
multiple retinal abnormalities in a country with a 
heterogeneous population.

Methods
Study design
This is a national real-world evidence study involving 
51 clinical settings across China (appendix 2 p 2). We 
developed a Comprehensive AI Retinal Expert (CARE) 
system to identify 14 common retinal abnormalities 
using 207 228 colour fundus photographs derived from 
16 clinical settings with different disease distributions 
across China. CARE is a model for a single convolutional 
neural network (CNN) that is highly efficient with lower 
computational cost than ensembles of binary DLSs for 
individual abnormalities. CARE was internally validated 
using 21 867 photographs and then externally tested 
using 18 136 photographs prospectively collected from 
35 real-world centres across China, where the model 

Research in context

Evidence before this study
Medical artificial intelligence (AI) has entered the clinical 
implementation phase, although real-world performance of 
deep-learning systems (DLSs) for screening fundus disease 
remains unsatisfactory. A clinically applicable DLS for fundus 
diseases should be trained by real-world data and externally 
tested by fundus photographs collected prospectively from the 
settings in which the model would most likely be adopted. 
We searched PubMed and Web of Science on June 1, 2020 for 
articles published between Jan 1, 2010, and May 31, 2020, using 
the keywords “artificial intelligence”, “deep learning”, “fundus 
disease” (or other disease names, including “diabetic 
retinopathy” and “age-related macular degeneration”), and 
“real-world”, but identified no known studies that tested DLS 
for fundus diseases using prospectively collected nationwide 
real-world data. We did not apply any language restrictions. 
The US Food and Drug Administration authorised the first 
autonomous AI-based diagnostic system for diabetic-
retinopathy detection after a small-scale clinical trial in primary-
care offices. Another study was done by Google Health, which 
used a validated DLS trained on retrospective well curated 
retinal images for the detection of diabetic retinopathy, was 

applied in 11 clinics in real-world settings in Thailand. However, 
the performance of the DLS was well below expectation in a 
real-world environment, and further model training and testing 
is required.

Added value of this study
This national real-world evidence study trained a DLS to 
identify 14 retinal abnormalities using fundus photographs 
collected from different medical real-world settings and tested 
the DLS using photographs prospectively collected from 
settings across China and a series of designed datasets. 
The model performed well in a real-world environment. 
This study also showed that an AI solution can be deployed in 
remote areas with poor network infrastructure and scarce 
medical resources, while maintaining a high degree of accuracy.

Implications of all the available evidence
Using representative data to train a DLS and testing the model 
with prospectively-collected real-world data across the country 
can improve model performance in a real-world environment. 
This study provides an important reference for the National 
Medical Products Administration in regulatory decisions about 
new medical AI-device products.

See Online for appendix 2
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would most likely be adopted, including eight tertiary 
hospitals, six community hospitals, and 21 physical 
examination centres. The model performance was 
compared with that of ophthalmologists from nine 
provinces of China and compared with ophthalmologists 
with varying clinical experience. Finally, the validity of 
CARE was also tested on fundus photographs in non-
Chinese ethnicities and previously unused camera types.

40 ophthalmologists licensed in China (each with >5 years 
of experience) and six retinal experts (each with >10 years 
of experience) were involved in the annotation process 
(appendix 2 p 3). Each fundus photograph was randomly 
assigned to three qualified ophthalmologists for annotation 
(appendix 2 p 4); if the results were consistent, the 
annotation was adopted. If the findings were discordant, 
the three ophthalmologists had to discuss the results to 
reach a consensus. Expert arbitration was done by three 
retinal experts if any disagreement occurred in the 
previous discussion. For each individual, only one fundus 
photograph per eye was included. In total, 260 830 colour 
fundus photographs with 45–50° fields of view taken under 
natural pupil size were used for the training and testing of 
CARE. All photographs were categorised as normal or 
labelled with one or more of the following 14 common 
retinal abnormalities: two ocular manifestations of 
systemic diseases (referable diabetic retinopathy and 
referable hypertensive retinopathy) and 12 vision-
threatening abnormalities (glaucomatous optic neu
ropathy, pathological myopia, retinal vein occlusion, retinal 
detachment, macular hole, macular oedema, central 
serous chorioretinopathy, epiretinal membranes, retinitis 
pigmentosa, retinal drusen ≥65 μm, macular neovas
cularisation, and geographic atrophy). The retinal 
abnormalities were diagnosed by colour fundus photo
graphs on the basis of a comprehensive consideration of 
disease characteristics obtained from textbooks, reported 
literature, and the experience of retinal experts. We 
summarised the definitions or basis for judgment of the 14 
included retinal abnormalities as a reference for the graders 
(appendix 2 p 25). All retinal abnormalities observed were 
labelled if several lesions were found in the same 
photograph.

This study was approved by the institutional 
review board of the Zhongshan Ophthalmic Centre at 
Sun Yat-sen University (IRB-ZOC-SYSU). All procedures 
followed the tenets of the Declaration of Helsinki. All 
fundus photographs were anonymised and de-identified 
before the analysis. Informed consent was exempted 
by the IRB-ZOC-SYSU in the retrospectively collected 
development and internal validation sets. In the 
prospectively collected external test set, informed consent 
was obtained from the patients.

Development and internal validation datasets
CARE was developed using 207 228 fundus photographs 
retrospectively collected from 16 clinical settings pro
viding different amounts of medical care and disease 

distributions across nine provinces or municipalities of 
China between Jan 4, 2016 and Jun 29, 2018 (appendix 2 
pp 16–17). 16 settings with different disease distributions 
in the development set were mainly located in first-tier 
cities, including five tertiary hospitals, five community 
hospitals, and six physical examination centres (figure 1, 
table 1).

In total, 21 867 fundus photographs derived from the 
same settings as the development set during a different 
time period (from July 2, 2018, to Oct 31, 2018) were used to 
internally validate CARE. The internal validation set was 
divided into three subgroups according to the data sources 
as follows: hospital-based datasets with a fundus-disease 
ratio of 91·21%, community-based datasets with a fundus-
disease ratio of 20·96%, and population-based datasets 
with a fundus-disease ratio of 10·30% (appendix 2 p 18).

External test dataset from 35 centres 
The primary aim of CARE was to screen common 
retinal abnormalities in communities and populations 
undergoing physical examinations in different regions of 
China. Therefore, the model was externally tested using 
18 136 fundus photographs prospectively collected (from 
Dec 3, 2018, to Oct 31, 2019) from 35 real-world clinical 
settings where the model would be used (with no overlap 
of settings in the development set). The 35 settings are 
distributed in 28 provinces or municipalities of China 
(28 [82%] of 34 total provinces and municipalities in 
China; appendix 2 pp 19–20). The community-based and 
population-based data were prospectively collected from 

Figure 1: Geographical distribution of the clinical settings used in the model training and testing
The modelling data were predominantly derived from 16 clinical settings in first-tier cities, whereas the fundus 
photographs included in the external test sets were prospectively collected from 35 settings across China. 
PEC=physical examination centre. ZOC=Zhongshan Ophthalmic Centre.
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six community hospitals and 21 physical examination 
centres across China (figure 1). Given the low prevalence 
of some retinal abnormalities in the general population, 
hospital-based data from eight tertiary hospitals (different 
from those used in the development sets) were also 
collected to test the model in identification of each of the 
14 retinal abnormalities. All fundus photographs from 
the external test set were used in testing the model 
(table  1). All fundus photographs were taken by trained 
non-ophthalmologists. Patients were informed of the 
primary results immediately after fundus screening by 
CARE. The final diagnosis reports, confirmed by qualified 
ophthalmologists, were sent to patients by mobile 
application and a short message within one day. Blood-
sugar concentrations and blood pressure were measured 
to assist final diagnosis of referable diabetic retinopathy 
and hypertensive retinopathy by ophthalmologists. 
Refractive error in dioptres was measured in cases of 
pathological myopia to ensure diagnostic accuracy.

Algorithm construction of CARE
CARE was trained and tested using InceptionResNetV2 
architecture on the TensorFlow platform (version 1.10.1; 
Google, Mountain View, CA, USA)14 and the Python scikit 
learn package 0.22.2. CARE was optimised by the Adam 
optimiser15 with an initial learning rate of 0·001. Training 
and testing were done using GTX 1080Ti GPU ×2 (CUDA 
version 9.0; Nvidia, Santa Clara, CA, USA) with a batch size 
of 16. CARE was trained using multidisease-labelled 

fundus photographs in a single CNN network in which all 
disease information was shared with each interconnected 
classifier (figure 2A). This structure was selected as an 
assembled DLS with independent binary classifiers that do 
not share disease features (figure 2B). We presented more 
details regarding the algorithm principle of CARE 
(appendix 2 p 28).

Clinical tests
We compared the performance of CARE with that of 
15 independent binary-classification models trained using 
15 single-disease labels (normal fundus and 14 retinal 
abnormalities). The 15 binary-classification models were 
trained using the same development set and neural 
network architecture as CARE. The performance of CARE 
and the single disease-labelled models was compared 
using the hospital-based internal test set because of its 
good coverage of all included retinal abnormalities.

A disease-screening model should perform better than or 
similarly to physicians before real-world adoption. In this 
study, the performance of CARE was compared with that of 
nine ophthalmologists with experience with fundus disease 
(each 5–10 years of experience in tertiary hospitals) from 
the following nine provinces or municipalities of China: 
Beijing in north China; Shandong in north China; Hubei 
in central China; Hunan in central China; Tibet in 
northwest China; Xinjiang in northwest China; Guangdong 
in south China; Guangxi in south China; and Shanghai in 
East China.

Development Internal validation set External test set* Clinical test set Total

Tertiary 
hospital

Community 
hospital

Physical 
examination 
centre

Tertiary 
hospital

Community 
hospital

Physical 
examination 
centre

CARE–
human 
competitions 

Non-Chinese 
ethnicity 
(EyePACS)

Camera-
type test

Photographs 207 228 6735 1614 13 518 3101 7599 7039 358 11 294 1977 260 830†

Labels 253 069 11 107 1732 13 796 4690 7734 7246 366 11 294 1977 313 011

Label of normal 
fundus 

127 508 976 1369 12 375 951 7271 6483 44 3976 1636 162 589

Label of disease 125 561 10 131 363 1421 3645 463 763 322 7318 341 150 328

Type of disease 14 14 9 11 14 9 8 2 1 3 14

Manufacturers of 
camera

6 6 5 4 6 4 4 4 NA 1 7

Tertiary hospital-
based dataset 

63 625 
(30·7%)

6735 
(100%) 

0 0 3101 
(100%)

0 0 358 
(100%)

NA 1977 
(100%)

NA

Community 
hospital-based 
dataset

53 221 
(25·7%) 

0 1614 
(100%)

0 0 7599 
(100%)

0 0 NA 0 NA

Population-based‡ 

dataset
90 382 

(43·6%) 
0 0 13 518 

(100%)
0 0 7039 

(100%)
0 NA 0 NA

Data are n or n (%). The fundus photographs in the development and internal validation datasets were required to be of clinically acceptable quality; more than 80% of the area in the retinal image needed to be 
easily discriminated, including four main regions (the optic disc, macula, upper-retinal vessel arches, and lower-retinal vessel arches). The images exhibited light leaks covering less than 30% of the area, without 
spots from lens flares or stains, or severe overexposure. During model training, 211 676 fundus photographs were identified, and 207 228 (97·9%) of 211 676 were included for clinically acceptable quality. During 
internal validation, 22 482 fundus photographs were identified, and 21 867 (97·3%) of 22 482 were included for clinically acceptable quality (6735 [94·1%] of 7160 in tertiary hospitals; 1614 [98·3%] of 1642 in 
community hospitals; and 13 518 [98·8%] of 13 680 in physical examination centres). All fundus photographs from the external test set were used in testing CARE. CARE=Comprehensive Artificial intelligence 
Retinal Expert. NA=not applicable. *A high-performance quality-control model was introduced to assess the quality of fundus photographs before further analysis in the external test set, and 397 (2·2%) of 
18 136 photographs were identified as ungradable (184 [5·9%] of 3285 from tertiary hospitals; 130 [1·7%] of 7729 from community hospitals; and 83 [1·2%] of 7122 from physical examination centres). 
†Including 397 ungradable photographs from the external test set. ‡Fundus photographs were collected from physical examination centres. 

Table 1: Characteristics of the development, internal validation, external, and clinical test sets of CARE
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Furthermore, we compared the model performance 
with that of four groups of Chinese-licensed ophthal
mologists with diverse levels of experience as follows: 
two graduate students with less than 3 years of 
experience; two ophthalmologists with more than 
5 years of experience; two retinal experts with more 
than 10 years of experience; and one subgroup leader of 
the retinal-disease group of the Chinese Ophthal
mological Society (COS). The dataset used in the 
comparisons between CARE and the ophthalmologists 
included 358 additional fundus photographs collected 
from settings other than those that produced the 
development and test sets. All of the ophthalmologists 
involved in the comparisons were different from the 
46 annotation doctors or experts.

CARE was tested using datasets with different 
ethnicities and camera types to validate the model 
performance. CARE was tested using 11 294 relabelled 
fundus photographs randomly selected from a public 
Kaggle dataset (EyePACS LLC, San Jose, CA, USA).16 The 
fundus photographs of EyePACS were mostly collected 
from the Latino population in the USA, and featured 
different ethnic compositions from the Chinese dataset, 
including Hispanic patients (nearly 55%), with Black, 
White, and Asian patients each comprising approximately 

5–10% of the population.4 Because of the small number 
of disease categories in the EyePACS Kaggle dataset, only 
the identification of referable diabetic retinopathy 
(including moderate-to-severe non-proliferative diabetic 
retinopathy and proliferative diabetic retinopathy) was 
analysed in this study. As the most common camera 
types were covered in the development set, CARE was 
tested using a special dataset of 1977 scanned files of 
printed fundus photographs from an old-film camera 
(CR6-45NM, Canon, Tokyo, Japan) that completely 
differed from those used to capture the development and 
test sets. Examples of fundus photographs from 
development, Kaggle (EyePACS), and scanned-file 
datasets are shown (appendix 2 p 5).

Statistical analysis
All data were stored in the National Engineering Research 
Centre of Science and Technology Information. The area 
under the receiver operating characteristic curve (AUC), 
sensitivity, specificity, and 95% CIs of the AUC of the 
DLS were calculated to establish and compare model 
performance. 95% CIs of the AUCs were calculated with 
2000 bootstrap samples using the Python scikit learn 
package (version 0.22.2).17 This study was registered with 
ClinicalTrials.gov (NCT04213430).

Figure 2: Algorithm principle comparison between CARE and an assembled deep-learning system
CARE was trained using multidisease-labelled fundus photographs in a single convolutional neural network in which all disease information was shared with each 
interconnected classifier (A). This structure was selected as an assembled deep-learning system with independent binary classifiers that do not share disease 
features (B). CARE=Comprehensive Artificial intelligence Retinal Expert. Conv=convolutional. DR=diabetic retinopathy. HR=hypertensive retinopathy. RD=retinal 
detachment.
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Role of the funding source
The funders had no role in the study design, data 
collection, data analysis, data interpretation, or writing of 
this report. 

Results
In total, 260 830 fundus photographs were included in 
the model development and evaluation. The ratio of 
fundus photographs among the dataset for the model 
development, internal validation, external test, and 
clinical test was 80:8:7:5. The disease distributions in the 
development and test sets are shown (appendix 2 p 18). 
397 (2·2%) of 18 136 photographs were classified as 
ungradable by the algorithm in the external test set 
(table 1). The information of known manufacturers and 
types of camera used in this study are presented 
(appendix 2 p 21).

The performance of CARE using the internal test and 
external test sets is shown (table 2; appendix 2 pp 6–11). 
The mean AUC for identifying the 14 retinal abnormalities 
and normal fundus was 0·955 (SD 0·046) in the internal 
validation set and 0·968 (0·037) in the external test set. 
Except for hypertensive retinopathy, CARE exhibited 
good performance with the included abnormalities, and 
nearly all AUCs were greater than 0·9. Normal fundus 
could also be correctly identified by CARE with AUCs 
ranging from 0·868 (95% CI 0·859–0·876) to 0·973 
(0·969–0·976) in datasets with different disease 

proportions. The anatomical regions that the algorithm 
might have been using to make its diagnoses were shown 
by the attention heatmaps (appendix 2 p 12). 2987 
(13·66%) of 21 867 fundus photographs in the internal 
validation set and 863 (4·76%) of 18 136 in the external 
test set were identified as having multiple abnormalities 
by CARE; detailed percentage and distribution of multiple 
diagnoses are shown (appendix 2 p 22).

The comparisons of the model performance between 
CARE and the single disease-labelled binary models 
(SBMs) with 14 retinal abnormalities are shown (table 3; 
appendix 2 p 13). The mean AUC of CARE was higher 
than that of SBM (0·952 vs 0·921) with a narrower SD 
(0·047 vs 0·087). Compared with SBM, CARE was 
superior at identifying retinal drusen, macular hole, 
geographic atrophy, and normal fundus. CARE showed 
marginal superiority in identifying referable hypertensive 
retinopathy, although neither CARE nor SBM showed 
satisfactory performance (table 3).

The performance of CARE was similar to that of 
ophthalmologists in different regions with varying 
experience (figure 3). Large variations in sensitivity were 
observed among the ophthalmologists from different 
regions, ranging from 0·610 to 0·911 in referable diabetic 
retinopathy and from 0·500 to 0·929 in pathological 
myopia (appendix 2 p 23). Large variations in sensitivity 
were also observed among doctors with varying 
experience, from 0·447 to 0·834 in referable diabetic 

Internal validation set External test set Threshold*

Tertiary hospital 
(n=6735)

Community hospital 
(n=1614)

Physical examination 
centre (n=13518)

Tertiary hospital 
(n=3101)

Community hospital 
(n=7599)

Physical examination 
centre (n=7039)

Referable diabetic 
retinopathy

0·954 (0·947–0·960) 0·992 (0·983–0·997) 0·852 (0·628–0·999) 0·960 (0·953–0·966) 0·999 (0·998–1·000) 0·918 (0·887–0·944) 0·014

Referable hypertensive 
retinopathy

0·797 (0·759–0·832) NA NA 0·861 (0·788–0·922) NA NA 0·019

Glaucomatous optic 
neuropathy

0·952 (0·945–0·958) 0·968 (0·958–0·977) 0·954 (0·946–0·963) 0·991 (0·989–0·994) 0·993 (0·991–0·996) 0·983 (0·979–0·985) 0·058

Pathological myopia 0·975 (0·970–0·979) 0·993 (0·988–0·996) 0·975 (0·952–0·990) 0·990 (0·986–0·994) 0·995 (0·992–0·997) 0·994 (0·992–0·996) 0·070

Retinal vein occlusion 0·962 (0·959–0·966) NA NA 0·948 (0·940–0·956) NA NA 0·087

Retinal detachment 0·975 (0·961–0·985) NA NA 0·991 (0·970–0·999) NA NA 0·025

Macular holes 0·953 (0·932–0·971) NA 0·999 (0·999–1·000) 0·998 (0·992–1·000) NA NA 0·010

Macular oedema 0·975 (0·971–0·978) 0·994 (0·985–0·999) NA 0·940 (0·933–0·947) 0·999 (0·999–1·000) NA 0·012

Central serous 
chorioretinopathy

0·983 (0·976–0·989) NA NA 0·974 (0·914–0·999) NA NA 0·019

Epimacular membranes 0·951 (0·941–0·960) 0·992 (0·985–0·998) 0·994 (0·990–0·997) 0·934 (0·914–0·952) 0·990 (0·985–0·995) NA 0·059

Retinitis pigmentosa 0·996 (0·994–0·998) NA NA 0·999 (0·999–1·000) NA NA 0·018

Retinal drusen 0·916 (0·898–0·932) 0·977 (0·966–0·986) 0·938 (0·867–0·987) 0·948 (0·912–0·975) 0·994 (0·991–0·996) 0·982 (0·971–0·990) 0·006

Macular 
neovascularisation

0·977 (0·974–0·981) NA NA 0·981 (0·973–0·987) NA NA 0·113

Geographic atrophy 0·946 (0·910–0·973) NA NA 0·999 (0·999–1·000) NA NA 0·001

Normal fundus 0·973 (0·969–0·976) 0·903 (0·893–0·914) 0·868 (0·859–0·876) 0·961 (0·956–0·965) 0·908 (0·902–0·915) 0·889 (0·882–0·895) 0·172

Mean AUC (SD) 0·952 (0·045) 0·974 (0·030) 0·940 (0·054) 0·965 (0·035) 0·983 (0·031) 0·953 (0·042) NA

Data are AUC (95% CI). Model performance in identifying diseases with fewer than five fundus photographs was not analysed. AUC=area under the curve. CARE=Comprehensive Artificial intelligence Retinal 
Expert. NA=not applicable. *The thresholds are calculated on the basis of tertiary hospital-based data of the internal validation set; the sum of the sensitivity and specificity is maximised to obtain the threshold.

Table 2: Performance of CARE in internal validation and external tests for retinal abnormalities
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retinopathy and from 0·643 to 0·964 in pathological 
myopia (appendix 2 p 24). The subgroup leader of retinal 
disease of COS and the retinal experts exhibited slightly 
higher performance in disease identification than those 
with less experience.

CARE showed similar ability in identifying referable 
diabetic retinopathy (AUC 0·960, 95% CI 0·957–0·964) 
using the fundus photographs from the Kaggle dataset, 
which differed from the Chinese dataset in its ethnic 
composition. Compared with the tertiary hospital-based 
data of the external test set, CARE exhibited a reduced 
ability in identifying referable diabetic retinopathy (from 
AUC 0·960 [0·953–0·966] to AUC 0·882 [0·811–0·945]), 
geographical atrophy (from AUC 0·999 [0·999–1·000] to 
AUC 0·899 [0·876–0·920]), and normal fundus (from 
AUC 0·961 [0·956–0·965] to AUC 0·837 [0·816–0·858]) 
in the scanned files of fundus photographs from a 
previously-unused camera type (appendix 2 p 14).

Discussion
A wealth of data is needed for DLS training to 
discriminate clinically meaningful pathological changes 
from insignificant features. More still is required for 
model testing to validate application performance. Using 
unrepresentative and selective data and other single-
centre small-sample databases is not suitable for 
developing disease-identification DLS models because 
they limit generalisability and application in real-
world clinical environments. In this national real-world 
evidence study, we trained a DLS (CARE) to identify 
14 retinal abnormalities using fundus photographs 
collected from different medical real-world settings. We 

tested the model using not only photographs collected 
prospectively from 35 settings across China where the 
model would be mostly applied, but also a series of 
designed datasets with non-Chinese ethnicities and 
previously unencountered camera types. Furthermore, 
the requirement of computing power for CARE was 
relatively low. The computational cost of deploying an 
online AI service is dependent upon its GPU memory 
requirements. CARE consumed a maximum memory of 
3·6 Gigabytes (GPU RAM) in steady operation. Thus, 
CARE can be deployed using laptops as a standalone 
system for large-scale screening even in remote areas 
with poor networks, which is meaningful for real-world 
adoption. The module for diabetic retinopathy diagnosis 
of CARE has been approved by the National Medical 
Products Administration in China to enter the green 
channel of innovative medical device applications, and 
was also part of the first batch of class 3 AI-based devices 
to be approved for the detection of fundus diseases in 
China.18

Medical AI models are ultimately developed for clinical 
application and to address unmet clinical needs, especially 
in community settings. DLSs should be trained by 
representative data and be clinically tested before their 
implementation in real-world settings. China is a large 
and multi-ethnic (56 nationalities) country with 
34 provinces and municipalities. CARE development and 
internal and external tests were based on data from 
different clinical settings collected from 28 provinces and 
municipalities, including regions that have the largest 
number of ethnic groups, which are Yunnan, Inner 
Mongolia, Ningxia, Xinjiang, and Guangxi. CARE was 

AUC (95% CI) Sensitivity Specificity

CARE SBM CARE SBM CARE SBM

Referable diabetic retinopathy 0·954 (0·948–0·960) 0·973 (0·967–0·978) 0·938 0·951 0·878 0·912

Referable hypertensive retinopathy 0·797 (0·763–0·833) 0·769 (0·745–0·791) 0·600 0·887 0·862 0·562

Glaucomatous optic neuropathy 0·952 (0·945–0·957) 0·970 (0·964–0·976) 0·915 0·960 0·866 0·880

Pathological myopia 0·975 (0·970–0·979) 0·988 (0·984–0·991) 0·898 0·953 0·934 0·953

Retinal vein occlusion 0·962 (0·959–0·966) 0·992 (0·989–0·994) 0·945 0·956 0·905 0·969

Retinal detachment 0·975 (0·962–0·984) 0·917 (0·897–0·936) 0·923 0·936 0·929 0·772

Macular holes 0·953 (0·933–0·970) 0·786 (0·738–0·830) 0·880 0·758 0·869 0·691

Macular oedema 0·975 (0·972–0·978) 0·963 (0·959–0·966) 0·931 0·909 0·924 0·887

Central serous chorioretinopathy 0·983 (0·976–0·989) 0·962 (0·956–0·968) 0·935 0·943 0·933 0·877

Epimacular membranes 0·951 (0·939–0·960) 0·941 (0·933–0·949) 0·882 0·876 0·903 0·877

Retinitis pigmentosa 0·996 (0·994–0·998) 0·991 (0·985–0·997) 0·973 0·959 0·981 0·977

Retinal drusen 0·916 (0·900–0·932) 0·743 (0·733–0·753) 0·860 0·862 0·850 0·556

Macular neovascularisation 0·977 (0·973–0·981) 0·992 (0·990–0·993) 0·922 0·958 0·925 0·953

Geographic atrophy 0·946 (0·913–0·971) 0·869 (0·822–0·911) 0·918 0·754 0·888 0·824

Normal fundus 0·973 (0·969–0·976) 0·962 (0·960–0·965) 0·942 0·943 0·900 0·867

Mean AUC (SD) 0·952 (0·047) 0·921 (0·087) 0·897 (0·087) 0·907 (0·069) 0·903 (0·035) 0·837 (0·136)

The performance of CARE and SBM was compared using the tertiary hospital-based internal validation set (n=6735). AUC=area under the curve. CARE=Comprehensive 
Artificial intelligence Retinal Expert. SBM=single disease-labelled binary model.

Table 3: Performance comparisons between CARE and SBM in the identification of 14 retinal abnormalities
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externally tested using data that was prospectively collected 
mainly from facilities the model was designed to serve, to 
approximate the real-world clinical environment of this 
multi-ethnic country.

We translated the computer logic of diagnosis to 
imitate the thinking of physicians by training a single-
network model that can detect multiple retinal abnor
malities using fundus photographs. CARE exhibited a 
higher AUC with a narrower SD than SBM. CARE 
enabled connections between coexisting and related 
pathologies to be made. Patients with pathological 
myopia19 and macular oedema20 are at higher risk for 
macular hole. Macular hole caused by axial elongation 
of a pathologically myopic eye is usually complicated by 
vertical tractional retinal detachment at the posterior 
pole.19,21 Retinal drusen, macular neovascularisation, 
and geographic atrophy are signs of AMD.22 Retinal 
drusen appear in any stage of AMD, including macular 
neovascularisation and geographic atrophy.23 Macular 
neovascularisation is less likely to occur with geographic 
atrophy. Including all these disease labels into one 
single CNN network might allow CARE to learn the 
diagnostic logic of retinal abnormalities to achieve 

further model performance improvements. We found 
that the abilities of CARE in the identification of retinal 
drusen and macular hole were improved by nearly 20% 
compared with those of SBM. Compared with other 
studies, CARE also exhibited slightly superior or similar 
AUCs for identifying referable diabetic retinopathy,2 
glaucomatous optic neuropathy,24 and geographic 
atrophy.25

We further validated the generalisability of CARE by 
comparing the performance of CARE against that of 
doctors and fundus photographs derived from patients 
of non-Chinese ethnicities or taken using previously-
unused camera types. Our findings indicate that disease 
diagnosis by doctors might be more easily affected by 
their clinical experience and has a risk of misdiagnosis. 
Because the data used for modelling and testing covered 
most regions and Chinese ethnicities of China, fundus 
photographs from Kaggle in the USA with different 
races from China were selected to test CARE. The ability 
to identify referable diabetic retinopathy was maintained 
in the Kaggle dataset, which is similar to those reported 
in other studies,4,26 indicating that the performance of 
CARE does not substantially decrease even when using 
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Figure 3: Comparisons of model performance with human doctors of various experience in different regions
The dataset used in the comparisons between CARE and ophthalmologists included 358 additional fundus photographs collected from settings other than those that 
produced the development and test sets. The performance of CARE was similar to that of ophthalmologists in different regions (A–C) with varying experience (D–F). 
Large variations in sensitivity were observed among both the ophthalmologists from different regions (ranging from 0·610 to 0·911 in referable diabetic retinopathy and 
from 0·500 to 0·929 in pathological myopia) and with varying experience (ranging from 0·447 to 0·834 in referable diabetic retinopathy and from 0·643 to 0·964 in 
pathological myopia). AUC=area under the receiver-operating characteristic curve. CARE=Comprehensive Artificial intelligence Retinal Expert. COS=Chinese 
Ophthalmological Society.
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fundus photographs of other races. Different camera 
types have different retinal image characteristics, 
including tones, exposure times, and pixilation. Given 
that the most common camera types were included in 
the model-training dataset, an unseen early type of non-
mydriatic retinal film camera was used to test CARE. 
Scanned files of printed fundus photographs were used 
to imitate varying photographic quality through 
differences in colour, exposure, and resolution. Patients 
usually obtain printed files of their fundus photographs 
in outpatient departments and can upload electronic 
copy files taken by telephone cameras to our online 
diagnosis system (appendix 2 p 15). The performance of 
CARE decreased to various degrees among referable 
diabetic retinopathy, glaucomatous optic neuropathy, 
and normal fundus. The noise of random dots and 
speckles added into images during scanning could 
be mistaken by the model for lesions such as 
microaneurysms and small haemorrhages. Further work 
is needed to improve the model’s performance using 
images from different camera types.

Our study has limitations. First, cost-effectiveness, 
patient experience, and clinical practice workflow were 
not investigated. This study used representative data to 
train CARE, and the model was tested using data mostly 
approximating the real-world clinical environment. The 
model framework was optimised to reduce computational 
cost, which is central to translating AI models into 
clinical applications. Second, retinal abnormalities were 
judged mainly by characteristic features in colour fundus 
photographs and the clinical experience of retinal 
experts, some subtle retinal pathologies might have been 
missed. However, efforts were expanded to test diag
nostic accuracy by incorporating data related to blood 
sugar, blood pressure, and degree of refractive error or 
related disease history. Third, only 14 representative 
common retinal abnormalities were included in this 
preliminary exploration of a multidisease-labelled single-
network DLS. Other retinal abnormalities, such as 
macroaneurysms and retinoblastoma, will be added in 
our future studies. Furthermore, because of the limita
tion of traditional fundus photographs with limited 
visible scope,27 CARE is not able to identify peripheral 
retinal pathologies. In addition, only a few diseases were 
included in the performance comparison between CARE 
and the ophthalmologists and the tests with non-Chinese 
ethnicities and unseen camera types. Satisfactory model 
performance was limited to the tested diseases, and 
the performance of CARE in the identification of other 
retinal abnormalities in photographs with previously 
unused ethnicities and camera types still requires further 
investigation.

In conclusion, we showed that a DLS (CARE), using 
a single CNN showed robust performance for the 
identification of 14 common retinal abnormalities in real-
world settings, representing an important development in 
the journey towards the adoption of AI. CARE was trained 

using representative fundus photographs and externally 
tested using data prospectively collected from clinical 
settings across the country, where the model would be 
most applied. CARE was also tested through comparisons 
with single disease-labelled binary-classification models, 
ophthalmologists, and a series of designed datasets with 
different ethnicities and camera types. More importantly, 
the requirement for less computational cost of CARE is 
important for real-world applications.
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